ETSI/SAGE Version: 1.5
Specification Date: 4™ Jan. 2011

Specification of the 3GPP Confidentiality and
Integrity Algorithms 128-EEAS3 & 128-EI1A3.
Document 1: 128-EEA3 and 128-E1A3 Specification

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 1 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

Document History

V1.0 18" June 2010 Publication
1.2 26-07-2010 Improvements to C code
1.3 27-07-2010 Minor corrections to C code
1.4 30-07-2010 Corrected preface
1.5 04-01-2011 A modification of 128-EIA3 and text improved
3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 2 of 16

128-EEA3 and 128-E1A3 Specification Version 1.5

Blank Page

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 3 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of
the 3GPP confidentiality algorithm 128-EEA3 and the 3GPP integrity algorithm 128-EIA3. This
document is the first of three, which between them form the entire specification of the 3GPP
Confidentiality and Integrity Algorithms:

e Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3.

Document 1: 128-EEA3 and 128-EIA3 Specifications.

e Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3.

Document 2: ZUC Specification.

e Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3.

Document 3: Implementor’s Test Data.

The normative part of the specification of the 128-EEA3 (confidentiality) and 128-EIA3 (integrity)
algorithms is in the main body of this document. The annexes to this document are purely
informative, and contain implementation program listings of the cryptographic algorithms
specified in the main body of this document, written in the programming language C.

The normative section of the specification of the stream cipher (ZUC) on which 128-EEA3 and
128-EIA3 are based is in the main body of Document 2.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 4 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

TABLE OF CONTENTS

1 OUTLINE OF THE NORMATIVE PARTooiiiiiieeeeee s 8
2 INTRODUCTORY INFORMATIONcceooiiiiiiiiieiieieere ettt 8
B T 113 (e L Lo o) s PR PR PRRUSPRRRRR 8
2.2 INOLALIOMS ...ttt ettt ettt sttt et et e e b e e sbeees e e eate et e e bt e bt e sbeesatesateenteebeenbeeaaeeas 8
3 CONFIDENTIALITY ALGORITHM 128-EEAS........ccooieeeeeeee e, 10
T8 T 6512 (0T L1 o1 T o USROS 10
3.2 INPULS ANd OULPULSc.veiieiiiiiiieeieeeiee e st e e e et e e steeesbeeetbeessseeessseessseeensseessseenns 10
3.3 INEtIALISALION c.ueetieiieii ettt et 10
3.4 Keystream GENETAtIONcccveeevieerieriieiierieereeseesteeseesseesseesseesssesssesseeseesseesseesseens 11
3.5 ENCryption/DeCTyPLiOn........cecuieriieriieniieniieeie ettt et et e sttestesteete et e st e sseesaeeeneeeneeas 11
4 INTEGRITY ALGORITHM 128-EIA3 ...t 12
4.1 TNEOAUCLION. ... eeuiitieiieie ettt ettt et s b ettt et sb e e saeeaeens 12
4.2 InPuts aNd OULPULSeeeiieieetiestie ettt ettt ettt ettt et e steesteesaeesnaeenbeebeesseesaeesnnes 12
4.3 INTHHALISATION c..eeitietietiet ettt ettt sb e st sttt et e b bt e st 12
4.4 Generating the KeYStrEamcccvveviieiieiiecie ettt sre e ere e e eaeseresenesenes 12
4.5 Compute the MACcccieiiiiieiieeie ettt ettt e st eseaesebessbeesaeseesseennnes 13
ANNEX 1 A Cimplementation of 128-EEA3...........ooiiiiii e 15
ANNEX 2 A Cimplementation of 128-EIA3..........cccoiiiiiiieeie et 16
3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 5 of 16

128-EEA3 and 128-E1A3 Specification Version 1.5

REFERENCES

[1] Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and
f9 specifications; (3GPP TS35.201 Release 6).

[2] 3GPP System Architecture Evolution (SAE); Security architecture; (3GPP TS33.401
Release 9).
[3] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.

Document 2: ZUC Specification.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 6 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

NORMATIVE SECTION

This part of the document contains the normative specification of the Confidentiality and
Integrity algorithms.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 7 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

1 OUTLINE OF THE NORMATIVE PART

Section 2 introduces the algorithm and describes the notation used in the subsequent sections.
Section 3 specifies the confidentiality algorithm 128-EEA3.
Section 4 specifies the integrity algorithm 128-EIA3.

2 INTRODUCTORY INFORMATION
2.1 Introduction

Within the security architecture of the LTE system there are standardized algorithms for
confidentiality and integrity. Two sets of algorithms 128-EEA1/128-EIA1 and 128-EEA2/128-EIA2
have already been specified [1-2]. In this document the third set of these algorithms
(128-EEA3/128-EIA3) based on ZUC [3] are proposed.

The confidentiality algorithm 128-EEA3 is a stream cipher that is used to encrypt/decrypt blocks
of data using a confidentiality key CK. The block of data may be between 1 and 20000 bits long.
The algorithm uses ZUC as a keystream generator.

The integrity algorithm 128-EIA3 computes a 32-bit MAC (Message Authentication Code) of a
given input message using an integrity key IK. The core algorithms adopted by the MAC are a
universal hash and ZUC.

2.2 Notations
2.2.1 Radix
In this document, integers are represented as decimal numbers unless specified otherwise. We

use the prefix “Ox” to indicate hexadecimal numbers and the subscript “2” to indicate a number
in binary representation.

Example 1. Integer a can be written in different representations:
a =1234567890 // decimal representation
= 0x499602D2 // hexadecimal representation

=1001001100101100000001011010010, //binary representation
2.2.2 Bit/Byte ordering

All data variables in this document are presented with the most significant bit/byte on the left
and the least significant bit/byte on the right. When a variable is broken down into a number of
substrings, the leftmost substring is numbered by 0, the next most significant substring is
numbered by 1 and so on throughout to the least significant substring.
Example 2. Let ¢=1001001100101100000001011010010,. Then the leftmost bit 1 of integer a
represents its most significant bit, and the rightmost bit 0 represents its least significant bit.
Example3. Let g =10010010100101100000001011010010,. If a is subdivided into 4 of 8-bit
substrings a [0], a [1], a [2] and a [3], then we have

a [0] =10010010,, a[1] =10010110,, a [2] =00000010,, a [3]=11010010,.

2.2.3 Operation notations

In this document, operation notations are defined as follows:

a || b Concatenation of substrings a and b

[x] The smallest integer no less than x

® Exclusive-OR

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 8 of 16

128-EEA3 and 128-E1A3 Specification Version 1.5

a<<t Left shift of integer a by t bits

Example 4. For two substrings a= 0x1234 and b= 0x5678, then their concatenation will be
c=a|| b =0x12345678.

2.2.4 List of Variables

COUNT The 32-bit counter.

BEARER The 5-bit bearer identity.

DIRECTION The 1-bit input indicating the direction of transmission.
CK The 128-bit confidentiality key.

IK The 128-bit integrity key.

LENGTH The number of bits to be encrypted/decrypted.

M The input message.

C The output message.

KEY The 128-bit initial key to ZUC.

v The 128-bit initial vector to ZUC.

L The number of key words generated by ZUC.

z[i] The i-th key bit of keystream generated by ZUC.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 9 of 16

128-EEA3 and 128-E1A3 Specification Version 1.5

3 CONFIDENTIALITY ALGORITHM 128-EEA3

3.1 Introduction

The confidentiality algorithm 128-EEA3 is a stream cipher that is used to encrypt/decrypt blocks
of data under a confidentiality key. The block of data can be between 1 and 20,000 bits in length.

3.2 Inputs and Outputs

The inputs to the algorithm are given in Table 1, the output in Table 2.

Table 1 The inputs to 128-EEA3

Parameter Size(bits) Remark
COUNT 32 The counter
BEARER 5 The bearer identity
DIRECTION 1 The direction of transmission
CK 128 Confidentiality key
LENGTH 32 The length of the input message
M LENGTH The input bit stream
Table 2 The output of 128-EEA3
Parameter Size(bits) Remark
C LENGTH The output bit stream

3.3 Initialisation

In this section we define how ZUC’s parameters, the initial key KEY and the initial vector IV, are
initialized with the confidentiality key CK and initialization variables before the generation of
keystream.
Let

cK=cK[o] || ckra] [|cki2] ||.. || cxas]

be the 128-bit confidentiality key, where CK[i] (0<i<15) are bytes. We set the 128-bit initial key

KEY to ZUC as
KEY = KEY[O] ||KEY[1] ||KEY[2] ||... || KEY[25],
where KEY[i] (0<i<15) are bytes. Then
KEY[i]=CK[i], i=0,1,2,...,15.
Let
COUNT=COUNTI[0] || COUNT[1] || COUNT[2] || COUNT[3]

be the 32-bit counter, where COUNT[i] (0<i<3) are bytes. We set the 128-bit initial vector to ZUC

as
v = vio] || vial ||vi2] ||| vias),
where IV[i] (0<i<15) are bytes. Then
IV[0] = COUNTI[O], IV[1] = COUNTI[1],
IV[2] = COUNT[2], IV[3] = COUNTI[3],
IV[4] = BEARER || DIRECTION || 00,,
IV[5] = IV[6] = IV[7] = 00000000,
IV[8] = IV[0], IV[9] = IV[1],
IV[10] = IV[2], IV[11] = IV[3],
IV[12] = IV[4], IV[13] = IV[5],
IV[14] = IV[6], IV[15] = IV[7].

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 10 of 16
128-EEAS3 and 128-E1A3 Specification Version 1.5

3.4 Keystream Generation

Let ZUC generate keystream of L words. When each of the word is expanded into a 32-bit string,
then we get a binary string z[0], z[1], ..., z[32xL-1], where z[0] is the most significant bit of the
first output word of ZUC and z[31] is the least significant bit. To encrypt a message of LENGTH bits,
it is required that L=] LENGTH/32 |.

3.5 Encryption/Decryption

Encryption/decryption operations are identical operations and are performed by the exclusive-OR
of the input message M with the generated keystream z.
Let

M =M[0] [|M[1] |mi2] ||... || MILENGTH-1]
be the input bit stream of length LENGTH and

c=clo] ||cra1 ||ci21 || .. || CILENGTH-1]
be the corresponding output bit stream of length LENGTH, where M[i] and CJ[i] are bits,
i=0,1,2,...,LENGTH-1. Then

Cli] = M[i]1® z[i1,i=0,1,2,...,LENGTH-1.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 11 of 16
128-EEA3 and 128-E1A3 Specification Version 1.5

4 INTEGRITY ALGORITHM 128-EI1A3
4.1 Introduction

The integrity algorithm 128-EIA3 is a message authentication code (MAC) function that is used to
compute the MAC of an input message using an integrity key IK. The message can be between 1
and 20,000 bits in length.

4.2 Inputs and Outputs

The inputs to the algorithm are given in Table 3, and the output is in Table 4.
Table 3 The inputs to 128-EIA3

Parameter Size (bits) Remark
COUNT 32 The counter
BEARER 5 The bearer identity
DIRECTION 1 The direction of transmission
IK 128 The integrity key
LENGTH 32 The bits of the input message
M LENGTH The input message

Table 4 The output of 128-EIA3
Parameter Size(bits) Remark
MAC 32 The MAC

4.3 Initialisation

In this section we define how ZUC’s parameters, the initial key KEY and the initial vector IV, are
initialized with the integrity key IK and initialization variables before the generation of keystream.
Let

Ik =1K[O] ||1k[2] ||1k2] ||... || k(5]
be the 128-bit integrity key, where IK[i](0<i<15) are bytes. We set the 128-bit initial key KEY to
ZUC as

KEY = KEY[0] || KEY[1] || KEYI2] ||... | KEY[25]
where KEY[i](0<i<15) are bytes. Then

KEYTi] = IK[i], i=0,1,2,...,15.
Let the 32-bit counter COUNT be

COUNT=COUNTI[0] | COUNTI[1] || COUNT[2] || COUNTI[3]
where COUNTIi] are bytes, i=0,1,2,3. We set the 128-bit initial vector IV to ZUC as

IV =1vio] [[ivial Jivi2l || ||ivizs),
where IV[i](0<i<15) are bytes. Then

IV[0] = COUNT[O], IV[1] = COUNT[1],

IV[2] = COUNT[2], IV[3] = COUNT[3],

IV[4] = BEARER || 000,, IV[5] =00000000,,

IV[6] = 00000000, IV[7] = 00000000,

IV[8] = IV[0] @© (DIRECTION << 7), IV[9] = IV[1],

IV[10] = IV[2], IV[11] = IV[3],

IV[12] = IV[4], IV[13] = IV[5],

IV[14] = IV[6] @ (DIRECTION << 7), IV[15] = IV[7].

4.4 Generating the keystream

Let ZUC generate a keystream of L=] LENGTH/32 +2 words. Denote the generated bit string by z[0],

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 12 of 16
128-EEAS3 and 128-E1A3 Specification Version 1.5

z[1], ..., z[32xL-1], where z[0] is the most significant bit of the first output word of ZUC and z[31]
is the least significant bit.

For each i=0,1,2,...,32%x(L-1), let
z = 2[i] ||zli+1] ||... || 2[i+31].
Then each z; is a 32-bit word.

45 Compute the MAC

Let T be a 32-bit word. Set T=0.

For each i=0,1,2,...,LENGTH-1, if M[i] = 1, then
T=T® Zj.

Set
T=T ® z;enGTH-

Finally we take T @ z3;4(.-1) as the output MAC, i.e.
MAC=T® Z32x%(L-1)-

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 13 of 16
128-EEAS3 and 128-E1A3 Specification Version 1.5

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative
specification of the Confidentiality and Integrity algorithms.

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 14 of 16
128-EEAS3 and 128-E1A3 Specification Version 1.5

ANNEX 1
A C implementation of 128-EEA3

typedef unsigned char u8;
typedef unsigned int u32;

/* The ZUC algorithm, see ref. [3]%*/
void ZUC(u8* k, u8* iv, u32* ks, int len)

/* The initialization of ZUC, see page 17 of ref. [3]%*/
Initialization(k, iv);

/* The procedure of generating keystream of ZUC, see page 18 of ref. [3]*/
GenerateKeystream(ks, len);

}

void EEA3 (u8* CK,u32 COUNT,u32 BEARER,u32 DIRECTION,u32 LENGTH,u32* M,u32* C)

u32 *z, L, i;
us8 1IVI[le];

L (LENGTH+31) /32;

z (u32 *) malloc (L*sizeof (u32));
IV([0] = (COUNT>>24) & OxXFF;

IV[1] = (COUNT>>16) & OxFF;

IV([2] = (COUNT>>8) & OxFF;

IVI[3] = COUNT & OxFF;

IVI[4] = ((BEARER << 3) | ((DIRECTION&1)<<2)) & OxFC;
IV[5] = 0;

IV [e] = 0;

IVI[7] = 0;

IVv[8] = IVI[0];

IVI[9] = IVI[1];

IvV([1i0] = IV[2];

IV[11l] = IVI[3];

IV[12] = IV[4];

IV([13] = IV[5];

Iv[14] = IV[e6];

IV([15] = IV[7];

ZUC(CK,IV,z,L);

for (i=0; i<L; i++)

C[i] = M[i] © =zI[i];
free(z);
}
3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3 page 15 of 16

128-EEAS3 and 128-E1A3 Specification Version 1.5

ANNEX 2
A C implementation of 128-EI1A3

typedef unsigned char u8;

typedef unsigned int u32;

void ZUC (u8* k, u8* iv, u32* keystream,
u32 GET_WORD(u32 * DATA, u32 i)

u32 WORD, tij;
ti =1 % 32;
if (ti == 0)
WORD = DATA[i/32];
else {
WORD = (DATA[i/32]<<ti)
1

return WORD;
u8 GET BIT(u32 * DATA, u32 i)
(DATA[i/32] &

return (1<<(31-(1%32))))

?

1

int length) ;

0;

/*see Annex 1%/

(DATA[1/32+1]>>(32-t1)) ;

void EIA3 (u8* IK,u32 COUNT,u32 DIRECTION,u32 BEARER,u32 LENGTH,u32* M,u32* MAC)

u32 *z, N, L, T, 1i;

u8 IVI[16];

IV[0] = (COUNT>>24) & OxFF;
IV([1] = (COUNT>>16) & OXFF;
IV[2] = (COUNT>>8) & OXFF;
IV([3] = COUNT & OxFF;

IV[4] = (BEARER << 3) & OxF8;
IV[5] = IV[6] = IV[7] = 0;
IVI[8] = ((COUNT>>24) & OxFF) *
IV[9] = (COUNT>>16) & OXFF;
IV[10] = (COUNT>>8) & OxFF;
IV[11] = COUNT & OxFF;

IV([12] = IV[4];

IV[13] = IV[5];

IV[14] = IV[6] * ((DIRECTION&1)<<7);
IV[15] = IV[7];

N = LENGTH + 64;

L = (N + 31) / 32;

z = (u32 *) malloc(L*sizeof (u32)) ;
ZUC(IK, IV, z, L);

T = 0;

for (i=0; 1<LENGTH; i++) {

if (GET BIT(M,1i))

A

T "= GET _WORD(z,1i);
!
b
T "= GET_WORD(Z,LENGTH);
*MAC = T * z[L-1];
free(z);

((DIRECTION&L) <<7) ;

3GPP Confidentiality and Integrity Algorithms 128-EEA3&128-EIA3

128-EEAS3 and 128-E1A3 Specification Version 1.5

page 16 of 16

	1 OUTLINE OF THE NORMATIVE PART
	2 INTRODUCTORY INFORMATION
	2.1 Introduction
	2.2 Notations
	2.2.1 Radix
	2.2.2 Bit/Byte ordering
	2.2.3 Operation notations
	2.2.4 List of Variables

	3 CONFIDENTIALITY ALGORITHM 128-EEA3
	3.1 Introduction
	3.2 Inputs and Outputs
	3.3 Initialisation
	3.4 Keystream Generation
	3.5 Encryption/Decryption

	4 INTEGRITY ALGORITHM 128-EIA3
	4.1 Introduction
	4.2 Inputs and Outputs
	4.3 Initialisation
	4.4 Generating the keystream
	4.5 Compute the MAC

	ANNEX 1 A C implementation of 128-EEA3
	ANNEX 2 A C implementation of 128-EIA3

